
CS 231A Final Project
Real-time Webcam Gaze-tracking

Wen Hao Lui
whlui@stanford.edu

Abstract

Gaze-tracking is a useful technology that opens new av-
enues for HCI and research into human behavioral pat-
terns. However, the image quality of current web cam-
eras and the need for real-time image processing makes
specialized hardware the norm in commercial offerings.
We present a machine-learning based approach using well-
engineered visual features to enable an accurate estimate
of the user’s gaze position using normal webcam hardware,
without the need for mounting on the user. Unlike other
webcam-based approaches, we also model the user’s head
orientation to allow the user greater flexibility in viewing
postures. Our successful experiment, with a median error
of 3.22° in determining the user’s gaze position, validates
our approach.

1. Introduction

Eye-tracking is a valuable capability that has versatile
applications, such as an input to a device or a measurable
metric for research. The strong eye-mind hypothesis [5]
postulates that the amount of time a person spends thinking
about an object is proportional to the time spent looking at
it. Based on this premise, several companies like EyeTrack-
Shop, YouEye and GazeHawk are offering gaze-tracking
services to allow product creators to see if users are looking
at the correct elements of the product, as opposed to being
distracted by a side icon for example. Besides usability test-
ing, gaze tracking can also be used for market research, such
as determining the products that grab attention in a shopping
aisle, or identifying the most eye-catching features of a bill-
board advertisement. Researchers also use eye-tracking to
study human tasks like reading, web surfing, and driving
[4] in more detail. Another interesting application is in HCI
[6, 8], where the user can use their eyes to direct input to
an electronic device. Besides the convenience afforded for
some tasks, this also allows physically impaired people to
have an alternative input system.

Figure 1. Illustration of problem. Given an image of the user
captured by the webcam, we want to identify the gaze co-ordinates
of the user (highlighted with the blue circle).

Figure 2. High-level overview of our approach. We collect cali-
bration images tagged with the gaze co-ordinates, then train a SVR
model on the extracted features from the images. The SVR model
is then used to predict a new set of gaze co-ordinate based on ex-
tracted features from a new input image.

1.1. Challenges

There are numerous challenges involved in gaze track-
ing, as explained by Kumar et al. [7]. The use of web cam-
eras dictate that the resolution of our video frames will be
lower. Since the user’s eyes take up a small fraction of the
captured image, the actual image size that we work with is
on the order of 60 by 30 pixels for the whole eye. As the
gaze shifts from the left edge to the right edge of the screen,
the pupil moves about 13 pixels at most from its original
position. A direct mapping will give a very coarse position
estimate, further worsened by noise; hence we need addi-
tional features to further fine-tune the output.

Eye movement is also naturally jerkey, and saccades are
a well-studied phenomenon in humans and other animals.
We aim to reduce the effect of this erratic behavior by ap-
plying a filter to smooth out the movement.

Given the predicted gaze position P for a frame of the
video stream,we apply an exponential moving average filter
or another smoothing algorithm in order to reduce the ef-
fects of saccades (rapid eye movements, usually done sub-
consciously) and noise from measurement.

1.2. Our work

We choose to work on a webcam platform that is al-
ready present in most user environments. The main chal-
lenge comes with the comparatively low image resolution

1

and wide field of view - this means that only a small number
of pixels are used to represent the eye, and makes determin-
ing visual features difficult and error-prone.

We tackle the usual formulation of the problem - given
an image of the user, as shown in Figure 1, we want to
determine the location on the screen that the user is look-
ing at. Our approach uses support vector regression (SVR)
on robust features to obtain reliable estimates of the eye
position. As shown in Figure 2, using calibration images
matched with the corresponding gaze co-ordinates of the
user, we extract the relevant features and train a linear SVR
model. This SVR model is then used to predict the gaze
co-ordinates of future input images.

2. Previous Work
Traditionally, eye-tracking has been carried out with spe-

cialized equipment. Some invasive tools used include spe-
cial contact lens and magnetic search coils [1]. As video-
recording and data-processing capabilities improved, there
has been greater interest in non-invasive optical methods
that can yield acceptably accurate results. Companies like
Tobii have developed specialized cameras that give accu-
rate readings of the user’s gaze point, allowing for direct
fine-grained control [9]. There has also been open-source
development of eye-tracking software such as Opengazer
[11] and Gaze Tracker [2] that allows home users to turn
their webcams into functional eye-trackers.

2.1. Main Contribution

This project will follow in the spirit of these open-source
projects and aim to create a working eye-tracking program
using a webcam. We plan to use easily available hardware
like web cameras, instead of specialized cameras, so as to
keep costs low and make the potential user base as large
as possible. We also want to avoid using any equipment
mounted on the body, which would bring inconvenience to
the user and again require specialized equipment.

We take Opengazer’s accuracy as a rough benchmark for
expected performance. It has an error of about 1.5-inch
on a 15-inch screen. This translates to an angular error of
about 4°. There were no other publicly available real-time
webcam-based gaze-tracking software available for com-
parison (that did not require the user wearing a camera).
Although there are inherent limitations due to the poor reso-
lution of web cameras, we discuss how we plan to approach
this lower error threshold in section 3.4.

Our learning model also improves on both commercial
and open-source gaze-tracking offerings, which typically
require the user to hold their head in a still position. By
modeling the orientation of the user’s head, we can main-
tain accurate predictions of the gaze co-ordinates despite the
user shifting his or her head. This allows greater comfort in
using the gaze-tracking software.

3. Approach
3.1. Overview

We collect training data through calibration, where the
user sits still and looks at various pre-determined points on
the screen while the program records the eye features. We
then use computer vision techniques to extract key features
from the calibration images. An SVR model is trained,
based on these extracted features and their corresponding
gaze co-ordinates. The model can then be used to make pre-
dictions of gaze co-ordinates given the extracted features of
a new image.

3.2. Problem Formulation

Given a webcam stream containing a user, we want to
identify the point on the screen that the user is looking at.
Parameters like screen size, position of camera relative to
the screen, screen resolution are assumed to be given. Ad-
ditionally, we will make use of existing features in libraries
like OpenCV for facial detection and eye recognition to cut
down on the amount of pre-processing work needed. For
subsequent discussions, we assume that the necessary pre-
processing has been done so that the two eye positions are
known, and the positions of the eyes in the picture are also
known.

For each image Q of the web stream, we want to output
a screen co-ordinate P = (x, y) that is as close as possible
to the true gaze point P̂ . The error is then the pixel distance
from the predicted co-ordinate to the actual co-ordinate, ε =
||P − P̂ ||. This error distance can then be translated to an
angular error with the given distance of the face from the
camera and the screen resolution.

3.3. Features

We choose to work with a small number of features in
order to simplify the model and allow it to better generalize
to unseen examples. This is needed because our low quan-
tity of training data (arising solely from calibration images)
makes our model very likely to overfit as we increase the
number of features.

We present our features and the methods used for fea-
ture extraction here. The methods chosen needed to fit the
criteria of precision (low variance) and speed. We need
precision due to the sensitivity of the gaze co-ordinates to
slight changes in feature value, while the speed requirement
was imposed to enable real-time feedback to the user. After
experimenting with several detection methods (RANSAC,
Hough transforms, sliding windows, shape contexts, SIFT
feature matching), we found that the most reliable method
was the generalized Hough transform [3]. By imposing cer-
tain constraints on the search space, we are able to perform
the required transforms in real-time. The list of features is
summarized in Table 1.

2

Figure 3. Generalized Hough transform for eyes, nose and
mouth. Image descriptions from left to right: original image,
Canny edge detection applied, shape template used, Hough vot-
ing pattern, identified keypoints based on most popular location
vote. We apply Canny edge detection to the given images, then
use the detected edges and a template to vote for the position of
the eye/nose, taking the highest-scoring pixel as the correct posi-
tion. The Hough voting pattern uses as the origin the right corner
of the eye, the right nostril, and the right corner of the mouth.

3.3.1 Face position in image

We want to localize the face in the image so that we know
the reference frame the user is looking from. In addition, it
gives us a smaller search space for our subsequent features,
saving computation time. This feature was calculated using
Haar cascades [10], and is a method already implemented
in OpenCV.

3.3.2 Eye position in face

Using Haar cascades only gives us a bounding box for the
eye position, which is not accurate enough for our purposes.
We use a generalized Hough transform, as shown in Figure
6, to estimate the position of the eye on a pixel level. We
apply a Gaussian filter to remove noises, then use a Canny
edge detector to identify the edges that would comprise our
shape of interest. For each eye, we have a shape template
based on the average shape profile of about 10 eyes. Each
pixel in the detected edges then votes for the position of the
eye, casting one vote from the perspective of each pixel in
the shape template. That is, if the origin of the eye is o, then
from the perspective p of the pixel in the shape template, the
pixel in location q in the original image would cast a vote
for the pixel in location q + (o − p). Tallying up the votes,
the pixel with the highest count would be the predicted eye
position.

3.3.3 Pupil position in eye

We use Hough circles to detect the pupil positions, speci-
fying a minimum and maximum radius in order to limit the
search space. The gradient-based approach in OpenCV did

Figure 4. Hough circle transform for pupil detection. We im-
pose a tight constraint on the minimum and maximum radii to keep
the search space small.

Figure 5. Matching keypoints for transformation matrix calcu-
lation. We use four corresponding points (one each from the eyes,
nose and mouth) to specify the transformation matrix from one
image to the other.

Figure 6. Identified key features in the image. The blue rectan-
gle indicates the bounding box found by the Haar cascade for face
detection. Eye, nose, and mouth positions were found using gen-
eralized Hough transforms. We found pupil positions using Hough
circle transforms.

not yield sufficiently consistent circle centers, so we imple-
mented our own approach based on Canny edge detectors
(Figure 4).

3.3.4 Head orientation

We use additional generalized Hough transforms to deter-
mine the nose and mouth positions. In addition to the two
eye positions, we now have four key points that we can use
to generate point correspondences (see Figure 5) between
any two images of the face. We can use this to calculate
the transformation matrix that converts points in one image
to another, and from the coefficients of the matrix we can
deduce the orientation angles of the head.

3.4. Learning

Given the features in Table 1, we can perform linear
regression with an SVM to map the relationship between

3

Feature Description
φ0 Constant bias term
φ1 Face position in image
φ2 Eye position in face
φ3 Pupil position in eye
φ4 Head orientation

Table 1. List of features for position estimation.

features and the gaze co-ordinates. We can use a linear
kernel due to the geometry of the problem - the gaze co-
ordinate varies linearly with the measured feature. In the
case of some non-linear features (such as angles), we do a
pre-computation by taking the arcsine of the angle with re-
spect to the zero position. Using a linear kernel also helps
with learning, because of the low amount of calibration im-
ages we can obtain. A higher-dimensional kernel will suffer
from the curse of dimensionality and very likely overfit the
training data.

We train two separate SVMs, one for the x-axis and one
for the y-axis. The optimization problem for the SVM be-
comes:

min
wx

1

2
wT

xwx + C
∑
i

max(|xi − wT
x φ(Q)| − ε, 0)

Where φ(Q) is a vector generated by the features de-
scribed earlier, C is the weight given to errors, and ε is the
threshold distance within which a prediction is labeled cor-
rect. A similar formulation holds for the y variables. The ε
term allows the regression to focus on the mis-predicted ex-
amples as support vectors instead. We also use the absolute
deviation instead of squared deviation to make the regres-
sion more robust and less easily skewed by outliers (due to
the non-Gaussian distribution of error).

The predictor for the gaze co-ordinates is then:

(x, y) = (wT
x φ(Q), wT

y φ(Q))

4. Experiments
We collected 60 images for training our model. Each

picture is taken when the user is looking at a randomly-
generated co-ordinate on the screen, and subsequently
tagged with the same co-ordinate. Using this training set
of 60 images with labeled gaze co-ordinates, we trained
60 different models using the leave-one-out cross-validation
approach in order to maximize the use of limited training
data. We report the aggregated error for the trained mod-
els on their respective unseen test images in Figure 7. The
median error is 148.3 pixels and the mean error is 240.3
pixels. The experiment was conducted on a 22-inch screen
with 1920x1080 resolution, viewed from a distance of 25
inches. This corresponds to a median angle error of 3.22°

Figure 7. Histogram of Testing Error. The error over the 60 train-
ing examples is computed using leave-one-out cross-validation.
The mean error is 240.3 pixels and the median error is 148.3 pixels

and a mean error angle of 5.22°. As can be seen from the
error histogram, the error follows an exponential distribu-
tion that makes outliers skew the mean error significantly.
We use the median error as a more robust gauge of the per-
formance of our system.

5. Conclusion
Using a few well-engineered features and a simple re-

gression method, we have managed to the predict the user’s
gaze co-ordinates with a median error of 3.22°. This com-
pares favorably with other commercial and open-source of-
ferings. As a comparison, most webcam-based approaches
have an error in the 2.5° to 5° range, while the median er-
ror with specialized hardware like the Tobii Eye Tracker is
around 0.5°.

The major shortcoming with current eye-tracking soft-
ware is that the user is required to sit still in order for the
calibrated model to be accurate. This makes gaze-tracking
technology uncomfortable for medium to long-duration use.
One future extension to this work is to incorporate more of
the user pose data into the model, so that the model can still
make accurate predictions even if the user’s pose changes.
We currently use the head orientation and position, but have
yet to include the distance of the user from the webcam. The
user distance makes a significant impact on the gaze point,
with the error scaling linearly. Incorporating this variable
into our model will further improve its accuracy and also
afford greater pose flexibility to the user.

References
[1] David A. Robinson: A method of measuring eye movement using a

scleral search coil in a magnetic field, IEEE Transactions on Bio-
Medical Electronics. October 1963.

[2] San Agustin, Skovsgaard J., Mollenbach H., Barret E., Tall M.,
Hansen M., D. W., and J. P. Hansen. Evaluation of a low-cost
open-source gaze tracker. In Proceedings of the 2010 Symposium on
Eye-Tracking Research & Applications (Austin, Texas, March 22-24,
pages 77–80. 2010. URL http://doi.acm.org/10.1145/
1743666.1743685.

[3] D. H. Ballard. Generalizing the hough transform to detect arbitrary
shapes. Pattern Recognition, 13(2):111–122, 1981.

4

http://doi.acm.org/10.1145/1743666.1743685
http://doi.acm.org/10.1145/1743666.1743685

[4] A. S. Cohen. Informationsaufnahme beim Befahren von Kurven, Psy-
chologie für die Praxis 2/83. 1983.

[5] M. A. Just and P. A. Carpenter. Eye fixations and cognitive processes.
Cognitive Psychology, 8:441–480, 1976.

[6] M. Kumar. Reducing the cost of eye tracking systems. Tech-
nical Report CSTR 2006-08, Stanford University, Stanford, April
2006. URL http://hci.stanford.edu/cstr/reports/
2006-08.pdf.

[7] Manu Kumar, Jeff Klingner, Rohan Puranik, Terry Winograd, and
Andreas Paepcke. Improving the accuracy of gaze input for inter-
action. In ETRA ’08: Proceedings of the 2008 symposium on Eye
tracking research & applications, pages 65–68, New York, NY, USA,
2008. ACM. ISBN 978-1-59593-982-1. doi: 10.1145/1344471.
1344488.

[8] Alex Poole and Linden J. Ball. Eye tracking in human-computer in-
teraction and usability research: Current status and future prospects.
2010.

[9] S. Stellmach and R. Dachselt. Gaze-supported Interaction (Demo).
Presented at the Mensch & Computer Workshopband, 2012.

[10] Paul Viola and Michael Jones. Rapid Object Detection using a
Boosted Cascade of Simple Features. Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2001.

[11] P. Zielinski. Opengazer: open-source gaze tracker for ordinary
webcams (software), Samsung and The Gatsby Charitable Founda-
tion. 2008. URL http://www.inference.phy.cam.ac.
uk/opengazer/.

5

http://hci.stanford.edu/cstr/reports/2006-08.pdf
http://hci.stanford.edu/cstr/reports/2006-08.pdf
http://www.inference.phy.cam.ac.uk/opengazer/
http://www.inference.phy.cam.ac.uk/opengazer/

	Introduction
	Challenges
	Our work

	Previous Work
	Main Contribution

	Approach
	Overview
	Problem Formulation
	Features
	Face position in image
	Eye position in face
	Pupil position in eye
	Head orientation

	Learning

	Experiments
	Conclusion

