
Tangled: Learning to Untangle Ropes with RGB-D Perception

Wen Hao Lui and Ashutosh Saxena.
Department of Computer Science, Cornell University, Ithaca, USA.

Email: wl378@cornell.edu, asaxena@cs.cornell.edu

Abstract— In this paper, we address the problem of ma-
nipulating deformable objects such as ropes. Starting with
an RGB-D view of a tangled rope, our goal is to infer
its knot structure and then choose appropriate manipulation
actions that result in the rope getting untangled. We design
appropriate features and present an inference algorithm based
on particle filters to infer the rope’s structure. Our learning
algorithm is based on max-margin learning. We then choose
an appropriate manipulation action based on the current knot
structure and other properties such as slack in the rope. We
then repeatedly perform perception and manipulation until the
rope is untangled. We evaluate our algorithm extensively on
a dataset having five different types of ropes and 10 different
types of knots. We then perform robotic experiments, in which
our bimanual manipulator (PR2) untangles ropes successfully
76.9% of the time.

I. INTRODUCTION

The environment around us is full of one-dimensional
deformable objects such as pet leashes, cables for electronics,
shoelaces and even yarns and threads for the artisan. When
sailing, there are lifelines, lanyards and so on. In rescue
operations, we need to manipulate wires in improvised explo-
sive devices, power lines, etc. Mobile manipulators working
in such environments will encounter such objects and need
to effectively work with them. In this paper, we present
perception and manipulation algorithms for manipulating
such items, specifically for untangling ropes.

While most previous work has focused on manipulating
rigid objects (or even kinematically linked objects [13]),
there is recent interest in manipulating deformable objects.
Schulman et al. [22] have developed an algorithm to track
the position and configurations of deformable objects such
as ropes and towels. Javdani et al. [7] instead focus on
perceiving rope bodies (specifically surgical sutures) in a
configuration using an energy function, but accurate exe-
cution relied on a consistent initial grasping point. Saha
et al. [20] work with a broader class of rope bodies, but
focus on the motion-planning aspect and had the same end
goal of attaining a specific knot configuration. They also
face similar limitations, requiring pre-specified grasp points
and knowledge of the current rope’s initial configuration.
Our work focuses on untangling ropes (of various types
and appearance) instead—this involves learning appropriate
manipulation moves as well.

One key challenge in untangling ropes is to perceive
its knot structure—it includes detecting the crossings and
ends, and ultimately its state of tanglement. We first use the
3D point cloud data (obtained from RGB-D sensor) of the

Fig. 1. Our robot observes a knotted rope using its RGB-D camera, infers
its knot structure and chooses appropriate manipulation actions to untangle
the rope.

tangled rope to generate a representation of the rope state,
capturing the main points of interest such as intersection
points. We not only need to find where the rope segments
are, but also connect them in proper order. We represent the
rope as a linear graph and use a score function that scores
different possible graph structures. We then use a novel rope
representation and an inference algorithm based on particle
filters to generate a reliable model of the rope, using an
max-margin method to learn the weights. Finally, we design
robust actions that help the robot to iteratively make progress
towards rope untanglement, prioritizing the actions based on
certain features (such as slack) in order to follow a minimum-
risk strategy.

We perform extensive experiments with five different types
of ropes and 10 different knot configurations, achieving an
average configuration inference accuracy of 76.7%, while the
intersection identification accuracy is 89.2%. Subsequently,
we executed a real-time inference and untangling experiment
on the PR2 robot platform, obtaining a successful untangling
rate of 76.9%.

The rest of the paper is organized as follows. We discuss
related work in Section II. We present the features and
the learning algorithm for perceiving the rope structure in
Section III and Section IV respectively. We then describe
our representation for rope knot structure in Section V,
followed by explaining our learning algorithm for choosing
the manipulation action in Section VI. Finally, we describe
our offline and robotic experiments in Section VII, and we
conclude in Section VIII.

II. RELATED WORK

We consider untangling the knots in a rope, where one
has to reason about the rope’s topological structure as well
as complex manipulation strategies while perceiving the rope
from RGB-D sensors. We therefore discuss related works in
the following three categories.
Knot Representation. Untangling knots requires reasoning
about its knot structure. Matsuno et al. [19] and Matsuno
and Fukuda [18] focus on interpreting real-world knots as
their mathematical counterparts, primarily using knot poly-
nomials. Although knot polynomials are knot-invariant, they
are not useful for real-world manipulations because they
do not allow us to identify useful manipulation points—
they are mainly used for knot isomorphism between two
rope configurations. Another shortcoming is the inability
to distinguish between over and under-crossings. In their
experiments, they focused on tying knots rather than rope
untanglement.

Dowker and Thistlethwaite [3] also came up with a useful
knot notation for mathematical knots, involving intersection
orderings prefixed by a + or � sign to indicate an over/under-
crossing. Each intersection is represented by a pairing of one
even and one odd crossing numbering. Although true for
mathematical knots, this is often violated in physical knots
due to rope ends that are separated via another segment; if
the ends were joined, they would have created an additional
crossing that makes the even-odd pairing always possible.
Goldenstein et al. [5], on the other hand, chose to focus on
the physical constraints of the system, and came up with a
general acyclic graph model to describe deformable objects.
However, this model lacks the necessary information for
subsequent analysis of manipulation moves that we need for
untangling knots.
Perception. General deformable-object classifiers [2, 4, 28,
27, 6] are useful for identifying that a given data set contains
a rope, but lack the specificity in inferring its configuration
and intersections. Javdani et al. [7] instead present an energy
model for rope configurations, inferring model parameters
from presented ropes. Given multiple possible perception
possibilities, the energy model helps to eliminate unlikely
high-energy possibilities. The limitation is that the model
leverages specific types of suture for perception, and there
is a greater challenge to generalize it to a greater class of
ropes. Furthermore, our task also uses learning algorithms for
inferring the appropriate manipulation moves given the rope
structure. Inexpensive RGB-D sensors led to several new
applications, including grasping towels and ropes. However,
inferring rope configurations is different and challenging.
Since we do not start with a known rope configuration, we
are unable to make assumptions about rope parameters.
Manipulation. Saha et al. [20] use the Dowker-
Thistlethwaite representation for their manipulation
planning. This is possible because they start and end the
rope with a known state, thus allowing manipulations to be
constrained within the set of possible configurations. More
interestingly, they make use of rigid objects to guide the

structure of the knot, before removing it if necessary for
self-knots. This approach is not as suitable when untying
knots, since the insertion of guiding rigid objects poses an
equally difficult challenge. Both Saha et. al. and Matsuno
et. al. [19] explore the manipulation of rope bodies, but their
primary application is tying simple knots from a known
starting state. Instead, we aim to start from an unknown state
and infer the necessary rope configuration and properties
to allow us to manipulate it and make progress towards an
untangled state.

Interestingly, rope manipulation theory extends to other ar-
eas such as fabric manipulation, as demonstrated by Shibata
et al. [23] where they approximate the folds in a cloth with
ropes of similar build. Both Yamakawa et al. [25] and Vinh
et al. [24] deal with the tying of rope knots, which is also
similar to our work of untying knots but avoids the difficulty
of inferring the initial rope configuration, and identifying
manipulation points. Yamakawa et al. [26] goes on to further
refine the idea of predicting rope behavior during high-speed
manipulation by taking advantage of rope properties that are
more stable during quick manipulations.

III. RGB-D POINT-CLOUDS: FEATURES FOR LEARNING

We capture the RGB-D data from the robot’s Kinect sensor
as a point cloud with color and depth. There are several
challenges associated with the RGB-D data from the Kinect
sensor (see Fig. 2). First, the resolution of the Kinect limits
us to thicker ropes such as power cables and polyester ropes.
Second, occlusion occurs when a rope segment overlaps with
another segment, making it challenging to infer the rope’s
structure. Third, the RGB data is misaligned with the depth
points and this further limits the accuracy.

(a) Original RGB-D image. (b) Inverted image, with markers.

Fig. 2. Example of the limitations of the Kinect RGB-D sensor.

RGB-D data pre-processing. We start by first removing
the underlying table surface via plane fitting. We then over-
segment the remaining points using a region-growing method
to obtain a collection of small segments, as shown in Fig. 3.
(One can potentially improve the performance by using a
better RGB-D segmentation method, e.g., [8].) This reduces
the size of representation from thousands of points to a few
hundred segments. Each segment is then a vertex in the
graph G = (V,E), where the vertices correspond to the rope
segment and the edges indicate how the segments are ordered
relative to each other.

(a) Image of the rope (b) Original point cloud (c) Segments identified.

Fig. 3. Pre-processing of the point-cloud to obtain candidate segments.

We need to obtain an ordering of these segments that
represents the correct rope configuration. In a valid graph,
all vertices have exactly two neighbors (except for the two
end-points). In Section IV, we will define a cost function
that scores each possible rope configuration based on certain
features we compute next.
Features. We compute several features listed in Table I to
form a feature vector �. �1 and �8 can be computed directly,
while the other features like average distance and angle
are computed by aggregating the relevant variable over a
traversal of the rope ordering. These features have a higher
value in rope orderings that are more likely to be correct.
For example, �1 encourages the inclusion of more vertices in
the rope ordering; with more included vertices, we are more
likely to have the entire rope configuration instead of a subset
of it. �2 and �3 reduce the distance between consecutive
points in the ordering, while �4 and �5 cause the ordering
of points to have smaller curvature. This particularly helps
in removing outliers. Lastly, �6 and �7 cause the ordering
to have gentle bends rather than sharp kinks.

TABLE I
LIST OF FEATURES FOR OUR LEARNING ALGORITHM.

Feature Description

�1 Binary value to indicate inclusion of vertex in rope configu-
ration

�2 Length of Edge

�3 (�2)2

�4 Cosine of angle made by 2 consecutive edges

�5 (�4)2

�6 Difference between consecutive �4

�7 (�6)2

�8 Constant term

(a) Incorrect: �1 would
help here.

(b) Incorrect: �4 and
�5 would help here.

(c) Correct graph G⇤

Fig. 4. Overlay of various rope configurations over a given set of vertices.
The inclusion of various features help in inferring the correct graph G⇤.

IV. LEARNING AND INFERENCE

Given a set of segments, our goal is to find the optimal
graph G

⇤ that represents the actual structure of the rope.
Fig. 4 shows a few graph structures, out of which we
want to find the correct graph structure G

⇤. We define a
score function (G) that indicates how accurately the graph
reflects the actual structure of the rope. The problem of
finding G

⇤ thus becomes:
G

⇤
= argmax

G

 (G) (1)
Where (G) = w

T

�(G), with w being the weight vector
that we will learn from supervised training data. For the
graph structure G = (V,E), we can decompose the score
function as:

 =

1

|V |
X

v2V

w

v

�

v

+

1

|E|
X

e2E

w

e

�

e

for the node features �

v

= (�1,�4,�5) and edge features
�

e

= (�2,�3,�6,�7).

A. Inference

We use a particle filter algorithm to find the highest-
scoring rope configuration. We start with an initial rope
configuration g0, then perform moves to generate possible
graph candidates R. We subsequently take the top scoring
candidates (according to), and repeat the process to
generate new candidates R

0 and so on. (See Fig. 5.) In our
experiments, we keep 10 particles. These are the moves we
designed (Fig. 6 shows an illustration of these moves):

m1 Remove worst segment.
m2 Add an excluded segment.
m3 Remove worst segment and add an excluded

segment.
m4 Rotate the segment ordering, so another segment

is at the beginning of the rope.
m5 Relocate a set of adjacent segments (of any num-

ber) to a higher-scoring position in the rope. The
set of segments maintain their position relative to
each other.

m6 Swap the positions of two sets of adjacent seg-
ments (of any number). Each set of segments
maintains their position relative to each other.

m7 Reverse the ordering of a set of adjacent segments
(and the points within them).

m8 Relocate all segments after a point to their re-
spective highest-scoring rope positions.

Moves m1, m2 and m3 provide opportunities to remove,
replace, and include segments as appropriate, thus allowing
the number of segments in the rope ordering to shrink or
grow correctly. The other moves present permutations over
the currently included segments, allowing the ordering to
achieve a higher value. These moves are more complex
and cannot be broken down because the intermediate order-
ings in each move may have a lower value than the start
and end state; if the move was decomposed, this creates
local maxima in for the inference search space, leading to
orderings that are sub-optimal.

Fig. 5. Illustration of particle filter algorithm. Each iteration updates a set
of candidate rope configurations R to R0.

(a) m1 (b) m2 (c) m3 (d) m4

(e) m5 (f) m6 (g) m7 (h) m8

Fig. 6. Illustration of different moves for the inference algorithm. The
black lines correspond to line segments (invariant over the course of the
inference), while the red lines represent the inferred rope ordering.

Moves m4 and m8 help ensure that the ends of the
rope are correctly identified. m8 in particular allows the
inference algorithm to identify the second rope end, when
the first rope end has been found (see Fig. 6h). Moves m5

and m6 are just two other actions that help to permute
the ordering of segments in the rope. Move m7 creates
a cross-stitching effect, as shown in Fig. 6g. This allows
the inference algorithm to switch between possibilities at
intersection points.

B. Learning

Our approach is based on large-margin learning [12]. This
method for inference has also been used in recent works
on RGB-D data [1, 15, 14, 16, 11]. The difference in our
work is that we have to reason over different possible graph
structures (because of different possible rope configurations).

The label y denotes an ordering of vertices for a given

rope configuration (i.e., one possible graph structure in the
previous section). We begin by defining a loss function
between the ground truth y and an arbitrary label ŷ:

�(y, ŷ) =

1

M(y)

�
M(y)�D(y, ŷ)

�
(2)

where D(y, ŷ) =

⇣
|X(y, ŷ)|+

nX

i=1

|V
i

|1.5 + 1

2

mX

i=1

|W
i

|1.5
⌘ 1

1.5

and X(y, ŷ) = {x|x 2 y \ ŷ,

{neighbors of x in y} \ {neighbors of x in ŷ} = ?}
M is the number of vertices in the solution y, D is a

measure of similarity between two labels, and X is the
number of vertices appearing in both ŷ and y, but has
differing neighbors between y and ŷ. We further define
a streak as a sequence of consecutively matching vertex
orderings between y and ŷ. V

i

is the i

th streak matching
in the same direction, and W

i

is the i

th streak matching in
the opposite direction. Note that when y = ŷ, we find that
�(y, y) = 0 since D(y, y) = M . We further illustrate it with
an example:

if y = (1, 3, 4, 5, 7, 6, 10, 9, 8)

ŷ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

then X = {1}
V = {(3, 4, 5)}
W = {(10, 9, 8), (7, 6)}

This loss function was designed with the following in mind:
• A L-1.5 norm was chosen to allow a small bonus for

longer matching streaks, while not trivializing shorter
streaks.

• Streaks that are in the wrong direction are penalized by
a discount factor.

• The loss is normalized from 0 to 1, with 0 being the
perfect solution.

Since the objective function is convex in the weights
w, we use the efficient plane-cutting algorithm for training
structural SVMs [12] to find the optimal set of weights. We
then formulate the training of the weights as the following
convex problem:

min

w,⇠

1

2

w

T

w + C⇠ (3)

s.t. 8ŷ : w

T

�(ŷ) � �(y, ŷ)� ⇠

where ⇠ is a slack variable for the SVM learning algorithm.
Useful estimates of ŷ at each iteration of the SVM are
obtained using our inference algorithm discussed in the
previous section.

Intersection points are not explicit in the linear ordering of
vertices for the earlier inference algorithm, but are necessary
for the graph representation. We project all line segments
formed by the vertex ordering into a plane, then look at depth
values in order to determine the over and under-crossings.
Once all intersection points are identified, we then use the
vertex ordering to determine the correct edges to add between
intersection nodes on the graph representation. An example
is shown in Fig. 7.

(a) Original rope (b) Intersect graph

(c) Untangled Rope

Fig. 7. Correspondence from rope to intersect graph G. Intersections
and rope ends are labeled according to L, described in Equation (4). The
untangled rope differs from the original at intersect 3, allowing it to satisfy
the untangled state condition in Section V.

V. ROPE KNOT REPRESENTATION

We need to reason about a given rope’s knot structure (e.g.,
Fig. 7) for choosing a suitable manipulation policy. Given
the graph structure inferred from the RGB-D image, we
present a representation based on the Dowker-Thistlethwaite
formulation [3], but modified for physical knots and better
intuitive understanding.

Using the earlier segment-based graph G = (V,E), let
the graph G = (V, E) be the intersection graph. Each vertex
v 2 V represents either an intersection or an end on the rope,
along with its position in 3D space. We create a labeling

L(v) = n, n 2 {1, 2, ..., |V|} (4)
such that during a traversal of the rope from the starting end,
v is the n-th intersection (or rope end) crossed for the first
time. Although there are two possible labelings depending on
which rope end is chosen for starting the traversal, this does
not affect the correctness of our subsequent manipulations.
The labelings are shown in Fig. 7.

Edges e 2 E on the graph correspond to an ordered list
of vertexes in V on the rope that connect one intersection
v 2 V to another. We define the following functions:

X(v1, v2) =

8
<

:

1 if e crosses over the other segment at
v2, or if v2 is a rope end

�1 otherwise
C(e) =

�
X(v2, v1), X(v1, v2)

�
where e = (v1, v2)

Every edge then has a property C(e) that determines if
the edge crosses over or under at the intersections on both
ends. In Fig. 7b, the ends of the edges are annotated using
+ and � instead for brevity.

Untangled State. When manipulating a rope, our goal is to
restore it to an untangled state. G is very useful in making
statements about entanglement. In the simplest case, a length
of rope with no intersections (i.e. |V| = 2) can be considered
untangled. However, ropes with one or more intersections can

also be considered untangled if they do not form a knot. If
we pick up one exposed end of the rope and lift it up until
no part of it touches the original surface it was lying on, it
would form a straight line from end to end. This is true for
the rope shown in Fig. 7c, which has a slight but important
variation from Fig. 7b.

We have a stronger test for untanglement: traversing along
the rope from end to end and checking if the rope performs
an under or over-crossing at each intersection, there is at most
one over-crossing to under-crossing transition (or under-
crossing to over-crossing). This is sufficient but not necessary
for untanglement.

VI. ROPE MANIPULATION

Having obtained the graph mapping of the intersection
points from RGB-D data, we now present our approach to
choose the manipulation actions (or rope untangling moves).
While many manipulation moves may be possible, some are
preferred because of criterion such as empty space, slack
in the rope, etc. Our manipulation moves belong to the
following categories:

• Reidemeister moves are actions that remove intersec-
tions from a rope anywhere along its length. The type I
move in Figure 8a is the simple untwisting of a loop in
the rope, originating and ending at the same intersection.
The type II move in Fig. 8b separates rope segments that
overlap, but are not entangled with each other.

• The node deletion move is executed only at the ends
of a rope. We pull the rope out from the first under-
crossing intersection, on the side opposite the rope
end. By repeating this move alone we can satisfy the
earlier criteria for untanglement, where over-crossings
all precede or follow all under-crossings.

(a) Type I (b) Type II

Fig. 8. Reidemeister Moves.

Fig. 9 shows an example of the node deletion move being
applied, causing a transition from the leftmost rope to the
middle rope. Next, the Reidemeister type II move can be
applied, causing the rope to reach an untangled state.

Fig. 9. Process of untangling a rope using a node deletion followed by a
Reidemeister move.

A. Choosing the optimal Manipulation Action

A single rope configuration may have several different
kinds of manipulation moves available. Each move could
also have multiple methods of execution, because the robot
can move the rope segment to different possible places.
Motivated by Jiang et al. [10], we frame manipulation as
a learning problem. We define the score of a manipulation
action a as:

�(a) = !

T

�(a)

where �(a) refers to the features for action a and ! is the
weight vector.

As Fig. 10 indicates, choosing which manipulation ac-
tion to use is tricky. One needs to not only take into
account which segment of rope is over another, but
also other aspects such as the amount of slack in the
rope, quality of configuration at the end of the ac-
tion, and area available around the release point (so
that the robot maintains slack in the rope). In order to
capture these effects, we design the following features:
�1 Distance to nearest rope segment that is not

manipulated.
�2

1
�1

�3 cos(↵), where ↵ is the angle made by the drop
point and the rope after u.

�4 �3/�1

�5 Number of segments crossed when a line is drawn
from the drop point to u.

Fig. 10. Illustration of features for a move. We grab the rope at the pick
up point node, then move it along the red line to the drop point. The new
rope configuration determines the feature scores for �1,�3,�5.

Since the number of moves in a given configuration
is small, we simply calculate � for all moves, searching
the entire execution-space for each move, and choose the
highest-scoring candidate for actual execution on the PR2.
For each move, in addition to moving the selected segment,
the other segment at the identified intersection needs to
be held in place as well to prevent it from being dragged
along and rendering the relative position of the segments
unchanged. We do so by using both the hands of our robot.
See some snapshots in Fig. 13. After taking one manipulation
action, our robot infers the new state of the rope from
new RGB-D data and repeats the process until the rope is
untangled.

VII. EXPERIMENTS

A. Inference and Learning Results

Data. In order to evaluate our learning algorithm for esti-
mating the rope structure, we collected an RGB-D data set
of 50 examples, with five different types of rope (Fig. 11),
and 10 different knot configurations (Fig. 12).

Evaluation Metrics. We evaluated our learning algorithm
for perception using 5-fold cross-validation, using a 40-10
split. Although the loss function is a good metric for the
accuracy of the inference algorithm, we report results on the
following three metrics:

1) Loss: The loss function, as described in Eq. (2).
2) Intersection-Graph: 1/0 classification of the correct-

ness of the inference ordering. An inferred ordering is correct
if it generates the same intersection graph as the correct
ordering solution.

3) Nodes: We generate an intersection graph for both the
inference and solution ordering, and check the percentage of
intersection nodes that are inferred correctly.

Nodes =

|V
inferred

\ V

solution

|
max(|V

inferred

|, |V
solution

|)
Results. Table II shows the results, where we obtain an
average success-rate of 76.7% for intersection graph infer-
ence and 89.2% for node inference. The main source of
inference failure was poor segmentation of the rope from
the surface it was resting on, causing the rope’s shadow to
be interpreted as part of the rope. As anticipated, the harder
ropes (containing more intersections) had a higher average
loss. However, the inference of the intersection positions and
overall intersection graph was largely consistent across all
rope configurations, indicating that our inference algorithm
would scale well with complex rope configurations that have
even more intersections.

B. Robotic Experiments and Results

In order to ensure that our rope structure inference and
rope manipulation algorithms are robust given the physical
constraints of the rope, we performed robotic experiments
on the ten different rope configurations using the PR2 robot
platform mounted with a Kinect sensor.

Given the RGB-D input, we use our rope configuration
inference algorithm to convert it into the rope representa-
tion. Our move inference algorithm then generates a move,
indicating the point in space where the rope segment is to
be grasped, and the point in space that it should be moved
to. The PR2 executes these commands, creating a new rope
state that needs to be re-inferred from a new RGB-D image.
This process is repeated until the untangled state is reached.
Because the PR2’s hands are relatively large, we need to
completely release the rope before taking the RGB-D input to
avoid the hands occluding the rope. This creates uncertainty
in manipulation.

We consider it a success if the rope is completely un-
tangled after 5 moves. Experimental results are shown in
Table III. The table reports the following metrics:

(a) Nylon rope - Knot 8 (b) Manila rope - Knot 3 (c) Power cable - Knot 5 (d) Hose - Knot 6 (e) Polyester rope - Knot 10

Fig. 11. Pictures of different types of ropes in various configurations in our dataset.

(a) Knot 1 (b) Knot 2 (c) Knot 3 (d) Knot 4 (e) Knot 5 (f) Knot 6 (g) Knot 7 (h) Knot 8 (i) Knot 9 (j) Knot 10

Fig. 12. Different configurations of knots in our dataset.

TABLE II
Offline learning results for rope perception, split across rope types and difficulty of rope configuration. Loss: Loss against ground truth, computed as in

Eq. (2). Int. Graph: % intersection graphs that are correctly inferred. Nodes: % nodes in the intersection graph that are correctly inferred.

Easy (Knots 1, 2, 3) Medium (Knots 4, 5, 6, 7) Hard (Knots 8, 9, 10) Average
Loss Int. Graph Nodes Loss Int. Graph Nodes Loss Int. Graph Nodes Loss Int. Graph Nodes

Nylon 0.209 0.667 0.667 0.193 0.750 0.938 0.376 0.333 0.821 0.259 0.583 0.809
Hose 0.120 0.667 0.800 0.187 0.750 0.854 0.342 0.333 0.689 0.216 0.583 0.781

Manila 0.281 1.000 1.000 0.307 0.500 0.830 0.361 1.000 0.944 0.316 0.833 0.925
Poly 0.213 1.000 1.000 0.312 1.000 1.000 0.375 1.000 1.000 0.300 1.000 1.000

Power 0.236 1.000 1.000 0.263 0.500 0.838 0.226 1.000 1.000 0.242 0.833 0.946
Average 0.212 0.867 0.893 0.252 0.700 0.892 0.336 0.733 0.891 0.267 0.767 0.892

TABLE III
Robot experiment results. The average optimal number of steps to

untangle each rope is also shown.

N
od

e
In

fe
re

nc
e

R
op

e
In

fe
re

nc
e

M
ov

e
In

fe
re

nc
e

M
ov

e
Ex

ec
ut

io
n

U
nt

an
gl

ed
R

op
e

#
St

ep
s

to
U

nt
an

gl
e

O
pt

im
al

#S
te

ps
to

U
nt

an
gl

e

Nylon 82.7% 43.5% 95.7% 69.6% 80.0% 4.50 2.75
Hose 76.1% 34.8% 78.3% 95.7% 100.0% 4.60 2.80

Manila 70.2% 28.6% 60.7% 64.3% 40.0% 4.00 2.50
Poly 78.5% 33.3% 87.5% 62.5% 80.0% 4.75 2.75

Power 60.7% 12.1% 78.8% 66.7% 83.3% 5.40 2.60
Average 72.6% 29.0% 79.4% 71.0% 76.9% 4.75 2.70

1) Node Inference: Percentage of nodes that have a cor-
rect XYZ co-ordinate and over/under crossing allocation.

2) Rope Inference: Percentage of cases where all nodes
are correctly inferred.

3) Move Inference: A correct and feasible move is chosen
for the given rope configuration.

4) Untangled Rope: The rope meets the criteria for un-
tanglement (see Section V).

We observe that node inference and rope inference suc-
cesses are significantly lower in the robot experiment com-
pared to the offline learning experiments. This is largely
due to the rope often being manipulated by the robot into
configurations that are difficult to perceive. Some parts of the
rope fell outside the field of vision of the RGB-D sensor,
and other segments occluded important intersections. The
correctness of the inferred moves is also largely dependent on
the accuracy of the inferred rope structure, and is expected to
increase with better isolation of the rope RGB-D data from
its environment.

Note that despite the low accuracy in perception, our
manipulation choices are robust enough to ensure a higher
degree of success. This is because we do not need to
necessarily infer the complete rope configuration—even if
part of the rope configuration is incorrect, manipulation
on the other parts could still be successful. This allows
us to untangle 76.9% of the presented knots, spread over
various difficulty levels and rope types. Fig. 14 shows various
perspectives during manipulation experiments.

In our experiments, most of the failures were caused
by motion planning failures of the OMPL library (71%
of failures), and self-collisions with the other robot arm
that anchors part of the rope during manipulation (24%
of failures). We try to mitigate the occurrence of arm-to-
arm collisions by preferentially selecting moves that allow
a wide berth between both arms, and do not cause arms to
cross over each other. However, a more principled approach
that takes into account arm path planning while choosing
manipulation policies would improve performance in future
work. Given the available Reidemeister and node deletion
moves, we calculated the minimum number of moves needed
to manipulate each knot into an untangled state. We see that
the PR2 took an average of 4.75 moves, more than the ideal
average of 2.70—this is largely due to the failures in move
execution and poor grasping. If we employ learning in our
grasping approach (e.g., [17, 21, 9]) and use improved arm
motion planning, the performance should improve.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a learning algorithm for inferring and manip-
ulating rope structures. Starting with a point-cloud obtained
from an RGB-D camera, we designed appropriate features

Fig. 13. Snapshots of our robot untangling various ropes.

Fig. 14. Example of various perspectives during an experiment. From left
to right: RGB-D data view, the inferred graph view, the scene in the RViz
motion planner, and a snapshot of the PR2 in action.

that our learning algorithm uses to first infer the rope’s
knot structure and then choose an appropriate manipulation
action to untangle the knots in the ropes. The algorithm
used a particle filtering approach for inference and a max-
margin approach for learning the parameters. Our extensive
experiments first verified the performance on an offline
dataset, and then our robotic experiments showed that our
robot can untangle ropes 76.9% of the time.

There are a few directions for future work. Currently,
we rely solely on visual perception for identifying rope’s
knot structure, which may not be enough in very tight
knots where multiple intersections overlap each other. One
possibility is to take an active perception approach, e.g., turn
the rope over or introduce additional slack for perceiving it
better. Tactile sensing could also help in better perception
while manipulation. Finally, better planning algorithms that
consider the limitations of the arms as well as uncertainty in
perception would also improve the performance.

Acknowledgments. We thank Hema Koppula and Sanford
Johnson for useful discussions. This work was supported
by ARO award W911NF-12-1-0267, the Microsoft Faculty
Fellowship and the NSF Career Award to one of us (Saxena).

REFERENCES
[1] A. Anand, H. Koppula, T. Joachims, and A. Saxena. Contextually

guided semantic labeling and search for 3d point clouds. IJRR, 32(1):
19–34, 2013.

[2] C.C. Chang. Deformable shape finding with models based on kernel
methods. TIP, 15(9):2743–2754, 2006.

[3] C. Dowker and M. B. Thistlethwaite. Classification of knot projec-
tions. Topology and its Applications, 16(1):19–31, 1983.

[4] P.F. Felzenszwalb. Representation and detection of deformable shapes.
TPAMI, 27(2):208–220, 2005.

[5] S. Goldenstein, C. Vogler, and D. Metaxas. Directed acyclic graph
representation of deformable models. In WMVC, 2002.

[6] S. Goldenstein, C. Vogler, and L. Velho. Adaptive deformable models.
In SIBGRAPI, 2004.

[7] S. Javdani, S. Tandon, Jie Tang, J.F. O’Brien, and P. Abbeel. Modeling
and perception of deformable one-dimensional objects. In ICRA, 2011.

[8] Zhaoyin Jia, Andy Gallagher, Ashutosh Saxena, and Tsuhan Chen. 3d-
based reasoning with blocks, support, and stability. In CVPR, 2013.

[9] Y. Jiang, S. Moseson, and A. Saxena. Efficient grasping from rgbd
images: Learning using a new rectangle representation. In ICRA, 2011.

[10] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to place new
objects in a scene. IJRR, 31(9), 2012.

[11] Y. Jiang, H. Koppula, and A. Saxena. Hallucinated humans as the
hidden context for labeling 3d scenes. In CVPR, 2013.

[12] T. Joachims, T. Finley, and C. Yu. Cutting-plane training of structural
svms. Machine Learning, 77(1):27–59, 2009.

[13] D. Katz, M. Kazemi, A. Bagnell, and A. Stentz. Interactive segmen-
tation, tracking, and kinematic modeling of unknown 3d articulated
objects. In ICRA, 2013.

[14] H. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic labeling
of 3d point clouds for indoor scenes. In NIPS, 2011.

[15] H. Koppula, R. Gupta, and A. Saxena. Learning human activities and
object affordances from rgb-d videos. IJRR, 32(8):951–970, 2013.

[16] H.S. Koppula and A. Saxena. Anticipating human activities using
object affordances for reactive robotic response. In RSS, 2013.

[17] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic
grasps. In RSS, 2013.

[18] T. Matsuno and T. Fukuda. Manipulation of flexible rope using
topological model based on sensor information. In IROS, 2006.

[19] T. Matsuno, D. Tamaki, F. Arai, and T. Fukuda. Manipulation
of deformable linear objects using knot invariants to classify the
object condition based on image sensor information. IEEE/ASME
Transactions on Mechatronics, 11(4):401–408, 2006.

[20] M. Saha, P. Isto, and J.-C. Latombe. Motion planning for robotic
manipulation of deformable linear objects. In ICRA, 2006.

[21] A. Saxena, J. Driemeyer, J. Kearns, and A.Y. Ng. Robotic grasping
of novel objects. In NIPS, 2006.

[22] J. Schulman, A. Lee, J. Ho, and P. Abbeel. Tracking deformable
objects with point clouds. In ICRA, 2013.

[23] M. Shibata, T. Ota, and S. Hirai. Virtual rope theory for fabric
manipulation. In ISAM, 2009.

[24] T.V. Vinh, T. Tomizawa, S. Kudoh, and T. Suehiro. A new strategy
for making a knot with a general-purpose arm. In ICRA, 2012.

[25] Y. Yamakawa, A. Namiki, M. Ishikawa, and M. Shimojo. Knotting
manipulation of a flexible rope by a multifingered hand system based
on skill synthesis. In IROS, 2008.

[26] Y. Yamakawa, A. Namiki, and M. Ishikawa. Simple model and
deformation control of a flexible rope using constant, high-speed
motion of a robot arm. In ICRA, 2012.

[27] S.Y. Yeo, X. Xie, I. Sazonov, and P. Nithiarasu. Geometrically induced
force interaction for three-dimensional deformable models. TIP, 20(5):
1373–1387, 2011.

[28] Q. Zhou, L. Ma, M. Celenk, and D. Chelberg. Object detection and
recognition via deformable illumination and deformable shape. In
ICIP, 2006.

	Introduction
	Related Work
	RGB-D Point-Clouds: Features for Learning
	Learning and Inference
	Inference
	Learning

	Rope Knot Representation
	Rope Manipulation
	Choosing the optimal Manipulation Action

	Experiments
	Inference and Learning Results
	Loss
	Intersection-Graph
	Nodes

	Robotic Experiments and Results
	Node Inference
	Rope Inference
	Move Inference
	Untangled Rope

	Conclusions and Future Work

